Laser Transmitter for Space-Based Atmospheric and Oceanographic LIDAR, Phase II

Completed Technology Project (2015 - 2017)

Project Introduction

echnical Abstract: IThis Phase II SBIR program will build on successful Phase I work to provide Technology Readiness Level 4 (TRL-4) laboratory brassboard demonstration of laser sources and non-linear wavelength converters with significant improvements in efficiency and reduction in size, weight, and power consumption compared to systems currently available for space-based instruments planned for the coming 10 to 15 years. This new-generation technology is needed to reduce the size and weight of flight hardware to make it compatible with affordable, more capable satellite payloads. In particular we propose to demonstrate a novel laser transmitter architecture capable of providing a factor of two to three higher average power, pulse energy, and efficiency than laser systems flown on first-generation space-based active remote sensing systems. Our proposed program also includes brassboard demonstration of a highly-efficient wavelength conversion to the blue spectral region (450-500 nm) desired for oceanographic lidar sensors, of interest both for ACE and nearer-term Earth Venture missions.

Primary U.S. Work Locations and Key Partners

Laser Transmitter for Space-Based Atmospheric and Oceanographic LIDAR, Phase II

Table of Contents

Project Introduction	1	
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions	2	
Images	2	
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations	3	

Small Business Innovation Research/Small Business Tech Transfer

Laser Transmitter for Space-Based Atmospheric and Oceanographic LIDAR, Phase II

Completed Technology Project (2015 - 2017)

Organizations Performing Work	Role	Туре	Location
Fibertek, Inc.	Lead Organization	Industry	Herndon, Virginia
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Primary U.S. Work Locations

Virginia

Project Transitions

O

June 2015: Project Start

June 2017: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137770)

Images

Briefing Chart

Laser Transmitter for Space-Based Atmospheric and Oceanographic LIDAR Briefing Chart (https://techport.nasa.gov/imag e/133969)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Fibertek, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Charles Culpepper

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Laser Transmitter for Space-Based Atmospheric and Oceanographic LIDAR, Phase II

Completed Technology Project (2015 - 2017)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 TX08.1 Remote Sensing Instruments/Sensors
 TX08.1.5 Lasers
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

